17 research outputs found

    Optimizing cooperative cognitive radio networks with opportunistic access

    Get PDF
    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources

    FPGA-Based Hardware Implementation of Computationally Efficient Multi-Source DOA Estimation Algorithms

    Get PDF
    ABSTRACT Hardware implementation of proposed direction of arrival (DOA) estimation algorithms based on Cholesky and LDL decomposition is presented in this paper. The proposed algorithms are implemented for execution on an FPGA (field programmable gate array) as well as a PC (running LabVIEW) for multiple non-coherent sources located in the far-field region of a uniform linear array (ULA). Prototype testbeds built using National Instruments (NI) Universal Software Radio Peripheral (USRP) software defined radio (SDR) platform and Xilinx Virtex-5 FPGA are originally constructed for the experimental validation of the proposed algorithms. Results from LabVIEW simulations and real-time hardware experiments demonstrate the effectiveness of the proposed algorithms. Specifically, the implementation of proposed algorithms on a Xilinx Virtex-5 FPGA using LabVIEW software clarifies their efficiency in terms of computation time and resource utilization, which make them suitable for real-time practical applications. Moreover, performance comparison with QR decomposition-based DOA algorithms as well as similar FPGA-based implementations reported in the literature is conducted in terms of estimation accuracy, computation speed, and FPGA resources consumed

    Enhancing the efficiency of constrained dual-hop Variable-gain AF relaying under Nakagami- m fading

    Get PDF
    This paper studies power allocation for performance constrained dual-hop variable-gain amplify-and-forward (AF) relay networks in Nakagami- m fading. In this context, the performance constraint is formulated as a constraint on the end-to-end signal-to-noise-ratio (SNR) and the overall power consumed is minimized while maintaining this constraint. This problem is considered under two different assumptions of the available channel state information (CSI) at the relays, namely full CSI at the relays and partial CSI at the relays. In addition to the power minimization problem, we also consider the end-to-end SNR maximization problem under a total power constraint for the partial CSI case. We provide closed-form solutions for all the problems which are easy to implement except in two cases, namely selective relaying with partial CSI for power minimization and SNR maximization, where we give the solution in the form of a one-variable equation which can be solved efficiently. Numerical results are then provided to characterize the performance of the proposed power allocation algorithms considering the effects of channel parameters and CSI availability

    Power allocation strategies for fixed-gain half-duplex amplify-and-forward relaying in Nakagami-m fading

    Get PDF
    In this paper, we study power allocation strategies for a fixed-gain amplify-and-forward relay network employing multiple relays. We consider two optimization problems for the relay network: 1) maximizing the end-to-end signal-to-noise ratio (SNR) and 2) minimizing the total power consumption while maintaining the end-to-end SNR over a threshold value. We investigate these two problems for two relaying protocols of all-participate (AP) relaying and selective relaying and two cases of feedback to the relays, namely full and limited. We show that the SNR maximization problem is concave and that the power minimization problem is convex for all protocols and feedback cases considered. We obtain closed-form expressions for the two problems in the case of full feedback and solve the problems through convex programming for limited feedback. Numerical results show the benefit of having full feedback at the relays for both optimization problems. However, they also show that feedback overhead can be reduced by having only limited feedback to the relays with only a small degradation in performance
    corecore